Nanoscale lithography mediated by surface self-assembly of 16-[3,5-bis(mercaptomethyl)phenoxy]hexadecanoic acid on Au(111) investigated by scanning probe microscopy.

نویسندگان

  • Xianglin Zhai
  • Han Ju Lee
  • Tian Tian
  • T Randall Lee
  • Jayne C Garno
چکیده

The solution-phase self-assembly of bidentate 16-[3,5-bis(mercapto-methyl)phenoxy]hexadecanoic acid (BMPHA) on Au(111) was studied using nano-fabrication protocols with scanning probe nanolithography and immersion particle lithography. Molecularly thin films of BMPHA prepared by surface self-assembly have potential application as spatially selective layers in sensor designs. Either monolayer or bilayer films of BMPHA can be formed under ambient conditions, depending on the parameters of concentration and immersion intervals. Experiments with scanning probe-based lithography (nanoshaving and nanografting) were applied to measure the thickness of BMPHA films. The thickness of a monolayer and bilayer film of BMPHA on Au(111) were measured in situ with atomic force microscopy using n-octadecanethiol as an internal reference. Scanning probe-based nanofabrication provides a way to insert nanopatterns of a reference molecule of known dimensions within a matrix film of unknown thickness to enable a direct comparison of heights and surface morphology. Immersion particle lithography was used to prepare a periodic arrangement of nanoholes within films of BMPHA. The nanoholes could be backfilled by immersion in a SAM solution to produce nanodots of n-octadecanethiol surrounded by a film of BMPHA. Test platforms prepared by immersion particle lithography enables control of the dimensions of surface sites to construct supramolecular assemblies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface assembly and nanofabrication of 1,1,1-tris(mercaptomethyl)heptadecane on Au(111) studied with time-lapse atomic force microscopy

The solution self-assembly of multidentate organothiols onto Au(111) was studied in situ using scanning probe nanolithography and time-lapse atomic force microscopy (AFM). Self-assembled monolayers (SAMs) prepared from dilute solutions of multidentate thiols were found to assemble slowly, requiring more than six hours to generate films. A clean gold substrate was first imaged in ethanolic media...

متن کامل

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

Robust carboxylic acid-terminated organic thin films and nanoparticle protectants generated from bidentate alkanethiols.

A new carboxylic acid-terminated alkanethiol having bidentate character, 16-(3,5-bis(mercaptomethyl)phenoxy)hexadecanoic acid (BMPHA), was designed as an absorbate and protectant to form thermally stable carboxylic acid-terminated organic thin films on flat gold and nanoparticles, respectively. The structural features of the organic thin films derived from BMPHA were characterized by ellipsomet...

متن کامل

Studying of various nanolithography methods by using Scanning Probe Microscope

The Scanning Probe Microscopes (SPMs) based lithographic techniques have been demonstrated as an extremely capable patterning tool. Manipulating surfaces, creating atomic assembly, fabricating chemical patterns, imaging topography and characterizing various mechanical properties of materials in nanometer regime are enabled by this technique. In this paper, a qualified overview of diverse lithog...

متن کامل

Studying of various nanolithography methods by using Scanning Probe Microscope

The Scanning Probe Microscopes (SPMs) based lithographic techniques have been demonstrated as an extremely capable patterning tool. Manipulating surfaces, creating atomic assembly, fabricating chemical patterns, imaging topography and characterizing various mechanical properties of materials in nanometer regime are enabled by this technique. In this paper, a qualified overview of diverse lithog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 2014